

TeleGeography Workshop

Brianna Boudreau Jon Hjembo Alan Mauldin

PTC 2025 January 19, 2025

Overview

Brianna's presentation

• From Clickbait to Reality: A Deep Dive into Global Pricing Trends

Jon's presentation

• Evaluating Interconnection Market Health

Alan's presentation

• Mother Earth, Motherboard

From Clickbait to Reality: A Deep Dive into Global Pricing Trends

Brianna Boudreau

Overview

- Transport Pricing
 - New supply is finally coming, are prices falling?
 - Price implications of ensuring network diversity and resilience
- Keeping Pace with Capacity Requirements: 400G
 - How have 400G prices evolved?
 - Price multiples by route & provider
- IP Transit: Established Hubs vs. the Next-Generation
 - Impact of transport on IP transit prices
 - Impact of network investment on existing hubs & secondary markets
 - 400 GigE ports

New Supply is Finally Coming, Are Prices Falling?

	The Submarine Cable Building
ACCESS EVOLUTION	Boom Has Only Just Begun
Asia's seabed is a hotbed of cable-laying activity	
New Cables Are Coming to Africa OPTICAL & FIXED NETWORKS Two more APAC subsea cable projects	
announced	9 subsea cable projects redefining Latin America's digital future

100 Gbps wavelength prices continue to decline globally as new supply comes online

Weighted Median 100 Gbps Wavelength Prices, 2021-2024

➤ TeleGeography

How these investments are impacting each region varies significantly

- In regions where new highcapacity cables have recently entered service, price erosion is accelerating.
 - Africa & Latin America reporting the highest rate of price erosion.
- On routes with continued delays in new supply, the pace of price erosion is slower.

Source: TeleGeography's Network Pricing

Price erosion still slower on core APAC routes

Weighted Median 100 Gbps Wavelength Prices & CAGR Price Decline

Source: TeleGeography's Network Pricing

➤ TeleGeography

Maintaining global price differences

Weighted Median 100 Gbps Monthly Lease Prices Relative to London-New York

Source: TeleGeography's Network Pricing

➤ TeleGeography

Surge in new cable construction, particularly to Asia

Total Cable Construction Costs by Region

Source: TeleGeography's Transport Networks

➤ TeleGeography

Fueling forecasted price erosion

Forecasted 100 Gbps Wavelength CAGR Price Decline, YE 2024-YE 2030

★ TeleGeography

≫ TeleGeography

Price Implications of Ensuring Network Diversity and Resilience

Fragile lifelines: The rising threats and resilience of submarine cable networks

Submarine cable damage in the Red Sea 'severely underestimated'

Yemen Subsea Cable Repairs Delayed

CABLE TECHNOLOGY

Multiple cable failures impact Africa's Internet

MAR 15, 2024 | 3 MIN READ

ars **TECHNICA**

FIBER FIASCO

Cut submarine cables cause web outages across Africa; 6 countries still affected

Parts of Africa were already seeing web disruptions from damaged Red Sea cables.

SCHARON HARDING - 3/15/2024, 11:40 PM

Network diversity & resilience can be achieved a few ways

- · By route
- · By supplier or path
- · By geographic corridor

All have price implications

Pricing for diverse paths on the Trans-Pacific route

Weighted Median 100 Gbps Wavelength Prices on Trans-Pacific Routes, 2024

\$60,000

Source: TeleGeography's Network Pricing

→ TeleGeography

Pricing for diversity across routes in Asia

Weighted Median 100 Gbps Wavelength Prices & CAGR Price Decline

Source: TeleGeography's Network Pricing

➤ TeleGeography

Diversity by supplier and path

Weighted Median & Price Range for 100 Gbps Wavelengths on Johannesburg-London

Source: TeleGeography's Network Pricing

➤ TeleGeography

Diversity by geographic corridor

Weighted Median 100 Gbps Wavelength Prices on Key Routes to India, 2024

★ TeleGeography

Diversity by geographic corridor

Weighted Median 100 Gbps Wavelength Prices on Key Routes to Australia, 2024

→ TeleGeography

Keeping Pace with Capacity Requirements: 400G Businesses have high

Prepare for the AI traffic wave networks ready?

Bandwidth and Network Speeds Exploding with Hyperscale Deployments

Content Providers Are Still Hungry for Bandwidth

Industry Voices

Meeting the growing demand for connectivity

hopes for Al. Are their

400G more widely available & competitively priced

Global 100 & 400 Gbps Wavelength Prices & Price Multiples, 2024

X TeleGeography

Pricing strategy depends on carrier emphasis

100 & 400 Gbps Wavelength Prices & Price Multiples by Carrier on Frankfurt-London, 2024

→ TeleGeography

Pricing strategy depends on carrier emphasis

100 & 400 Gbps Wavelength Prices & Price Multiples by Carrier on London-New York, 2024

X TeleGeography

Price multiples will continue to compress over time

Source: TeleGeography's Transport Networks Forecast Service

➤ TeleGeography

Evolution of IP transit in the World's Biggest Hubs vs. the Next-Generation

Up-and-coming digital hubs ready to sparkle in the Americas

MARKET STUDY

Fresh PoPs expand potential of spreading internet

hubs

Three Interconnection Hubs To Keep an Eye On

The World's Next Global Internet Hub Isn't a City But A Megaregion New interconnection markets in Southeast Asia

IP transit prices continue to decline globally

Weighted Median 100 GigE IP Transit Port Prices, 2021-2024

➤ TeleGeography

Pace of price erosion varies widely by market

Weighted Median 100 GigE IP Transit Port Prices & CAGR Price Decline

Source: TeleGeography's Network Pricing

→ TeleGeography

Lower costs and local traffic exchange lowering prices in secondary markets in Asia

Weighted Median 10 GigE IP Transit Prices & CAGR Price Decline

Source: TeleGeography's Network Pricing

→ TeleGeography

Narrowing the gap with established hubs

Source: TeleGeography's Network Pricing

➤ TeleGeography

Emergence of 400 GigE ports in established hubs

Weighted Median IP Transit Port Prices in Key Global Cities, 2024

- Price Multiples for 100
 GigE: 400GigE average
 2.8x
- 400 GigE represents a very small portion of providers' sales mix in the largest hubs in Europe & U.S.

Source: TeleGeography's Network Pricing

Thank you

Brianna Boudreau

Senior Research Manager bboudreau@telegeography.com

Evaluating Interconnection Market Health

Jon Hjembo

Outline

- Interdependent Parts
 - The key components of interconnection markets
- Comparing Relative Health
 - Side-by-side market analysis using the Market Connectivity Score
- Impaired Development
 - Markets with strong potential that lack key infrastructure
- Power: The Lifeblood of Connectivity Markets
 - Which markets have access to this critical commodity?

≫ TeleGeography

Interdependent Parts

a forts or mergin have

Prevenne addin

and water the man and

maria chiming

The second and the se

Critical components working together

- Network: local and global connectedness
- IX the traffic intersections
- Cloud delivering content and compute
- Data centers providing the housing
- Power keeping it all running
- Economy the commercial and personal activity that generates traffic
- Governance the framework of stability and transparency that enables flourishing

Data center markets do not develop in isolation

 Similar to a bioactive enclosure, they are part of a "technoactive" ecosystem where mutual interdependence enables thriving

Source: Hendershot Habitats

Comparing Relative Health

The Market Connectivity Score can help

This tool captures 43

 distinct market health
 metrics to help users
 diagnose the
 competitiveness of 3,000
 global network and data
 center markets.

Beijing Market Connectivity Score

Source: TeleGeography's Data Center Research Service

Polar charts are our X-rays

 Overlap two metros on the chart to observe relative strength across 9 metric groupings

Source: TeleGeography's Data Center Research Service

→ TeleGeography

Some markets to compare

- Looking at a sampling of fast-growth data center markets
- Each has more than 1 million square feet of space in operation and more than 10% CAGR growth

Source: TeleGeography's Data Center Research Service

www.telegeography.com

 KL has advantage of more competitive network pricing

➤ TeleGeography

- market with 7x the local peering membership of KL
- Jakarta has stronger IX

Jakarta and Kuala Lumpur

 Comparable rankings and similar strengths and weaknesses

Source: TeleGeography's Data Center Research Service

Berlin and Madrid

- Madrid has more cloud deployments and a higher share of clean power
- But Berlin is a fastgrowing data center market with more than 10 sites in the near pipeline

Source: TeleGeography's Data Center Research Service

Santiago de Chile and Santiago de Querétaro

- Chile has more clean power planned and higher governance score
- Mexico has more competitive network pricing

Source: TeleGeography's Data Center Research Service

→ TeleGeography

Johannesburg and Cape Town

 Base chart shows Johannesburg's status as a primary data center/ cloud market...

Source: TeleGeography's Data Center Research Service

Johannesburg and Cape Town

- If we elevate importance of clean power in the evaluation, Cape Town's score becomes as high as Joburg's. Why?
- Cape Town's power supply is nearly 70% comprised of clean energy

Source: TeleGeography's Data Center Research Service

Impaired Development

Strong network but lack of cloud...

- Lisbon directly connects with more than 40 international cities and has 13 subsea cables...
- Budapest has more than 35 Tbps of international internet capacity...
- Fortaleza has over 10 Tbps of international internet capacity and 10 subsea cables in service...
- But local cloud provisioning in all of these locations is limited to a few onramps at most

Transport and Cloud Market Connectivity Scores, Select Markets

Source: TeleGeography's Data Center Research Service

Strong IX but lack of DC space...

IX and Data Center Scores, Select Markets

- Each market has:
 - multiple exchanges
 - hundreds of ASNs
 - high concentration of international ASNs...
- ...but relatively little data center capacity

Source: TeleGeography's Data Center Research Service

And some key markets with no major clean power plans in the pipeline...

Market Connectivity Scores, Select Markets

Source: TeleGeography's Data Center Research Service

 APAC is home to several of the strongest connectivity markets with the *weakest* scores for clean power provisioning

→ TeleGeography

≫ TeleGeography

Power: The Lifeblood of Connectivity Markets

Markets with strong power scores

Clean Power Share of Total Power, Select Markets

Source: Global Energy Monitor; TeleGeography's Data Center Research Service

Note: Market Connectivity Score filters – Data Center and Cloud Infrastructure scores >5; Clean Power Share of Overall Capacity > 83

★ TeleGeography

Markets with strong power scores

Current and Planned Clean Power Scores, Select Markets

Source: Global Energy Monitor; TeleGeography's Data Center Research Service

Note: Market Connectivity Score filters - Data Center and Cloud Infrastructure scores >5; Clean Power Share of Overall Capacity > 83; Clean Power Planned Capacity > 34

→ TeleGeography

Sources of planned clean power in select countries

Share of Planned Clean Power by Source, China

Share of Planned Clean Power by Source, Philippines

Wind 26% Hydro 44% Solar 17% Nuclear 12%

Share of Planned Clean Power by Source, Netherlands

Source: Global Energy Monitor; TeleGeography's Data Center Research Service

Take-aways

- Interconnection market health depends on numerous network and macroeconomic components working together
- Individual markets have differing strengths and weaknesses...and the Market Connectivity Score can help you evaluate those!
- As power increasingly takes priority for interconnection market development, new clean energy options are popping up in some surprising places

Thank you

Jon Hjembo Senior Manager jhjembo@telegeography.com

Mother Earth, Motherboard Alan Mauldin

Inspiration for this presentation title

Neal Stephenson wrote an article in Wired in 1996 about the laying of FLAG Europe-Asia entitled "Mother Earth Mother Board".

Source: Wired, https://www.wired.com/1996/12/ffglass/

≫ TeleGeography

Cycles of Renewal

Al prompt: create an image of the earth's seasons that ties into the lifecycle of submarine cables please

New cable investment

Construction Cost of New Submarine Cables by Ready-

Why new cables?

- Bandwidth demand is still growing
- Commercial factors
 - Reducing unit costs
 - Inability to source requirements on existing cables
- Enhance route diversity and improve resiliency
- Aging cables
 - Many cables nearing end of economic lives

Source: TeleGeography's Transport Networks

≫ TeleGeography

Shifting to private hyperscaler cables

New Cable Investment by Ownership Type

Source: TeleGeography's Transport Networks

→ TeleGeography

Shifting to private hyperscaler cables

New Cable Investment by Ownership Type – <u>Trans-Atlantic</u>

Source: TeleGeography's Transport Networks

≻ TeleGeography

Shifting to private hyperscaler cables

New Cable Investment by Ownership Type – Trans-Pacific & Oceania

Source: TeleGeography's Transport Networks

≻ TeleGeography

Google cables

Google's Private Cable and Consortium Investments

Notes: Publicly disclosed investments only. Google has fiber pairs and capacity on additional cables. Source: TeleGeography's Transport Networks

Meta cables

Meta's Private Cable and Consortium Investments

Notes: Publicly disclosed investments only. Meta has fiber pairs and capacity on additional cables. Source: TeleGeography's Transport Networks

→ TeleGeography

Market implications

- Private cables are not for the sole use of hyperscalers
 - They will engage in swaps and also sells IRUs for fiber pairs, as well as $\frac{1}{4}$ and $\frac{1}{2}$ pairs
 - Carriers may collaborate with hyperscalers to fund entire branches that link into private cables
- Building new cables without hyperscaler involvement is increasingly challenging
- Carriers still needed as partners for hyperscaler cables in less open regulatory/investment environments (e.g. Middle East, Africa)

Heading to retirement?

Selected Active Cables +20 years of service

Source: TeleGeography's Transport Networks

➤ TeleGeography

≫ TeleGeography

A Resilient System

Al prompt: create an image that combines Mother Earth with a resilient global submarine cable network please

≫ TeleGeography

A Resilient System

Al prompt: create an image that combines Mother Earth with a resilient global submarine cable network please

Al prompt: uhh, let's use a globe, not a human body please

Diversity on the trans-Atlantic route

 Focused on New York/New Jersey

- Broad distribution from Canada to SE USA now
- New landings in Virginia Beach and Myrtle Beach

Source: TeleGeography's Transport Networks

 Mainly focused on the U.K. and NW
 France

- Broad distribution from Scandinavia to the Iberian Peninsula
- New landings in SW France, N. Spain, W. Ireland, and Norway

➤ TeleGeography

Diversity on the north trans-Pac route

 Heavily focused on Japan

 More cables to Japan, but increasingly Singapore, the Philippines, Taiwan, and Indonesia

Source: TeleGeography's Transport Networks

 U.S.-focused on Oregon and Southern California mainly

- New landings in California (San Diego, Manchester, Eureka)
- Cables connected to Canada and Mexico

→ TeleGeography

Diversity through corridors

• Diversity of corridors, not just multiple cables on a single corridor.

→ TeleGeography

Connectivity *≠* **capacity**

- Don't be fooled, cable maps show connectivity, **not** how capacity is deployed.
- The Middle East has substantial cable connectivity in many directions, but 82% of the region's used international capacity is linked to Europe.

→ TeleGeography

≫ TeleGeography

Global Climate Change

Al prompt: create an image that ties in climate change to the pace of bandwidth demand growth please

Demand: Global cooling

Used International Bandwidth Annual Growth, 2010-2024

Source: TeleGeography's Transport Networks

➤ TeleGeography

Widespread deceleration

Used International Bandwidth Growth by Region, 2010-2024

Source: TeleGeography's Transport Networks

→ TeleGeography

What's going on?

- Continued localization of content, applications, and compute
- Submarine cable delays
- Phase of network buildout
 - New market entry drives rapid capacity growth as operators overbuild to accommodate uncertain demand
 - Once sufficient scale and diversity is achieved, the pace of growth tends to slow
- The law of large numbers = "a large entity which is growing rapidly cannot maintain that growth pace forever"

Slower growth still leads to massive volumes

Used International Bandwidth Increases, 2024-2030

Source: TeleGeography's Transport Network Forecast

➤ TeleGeography

≫ TeleGeography

Evolution

Al prompt: create an image that ties in Mother Earth as a motherboard and the rise of Al

Factors shaping long-haul demand from AI

- Model training locations
 - Huge power and computing requirements but less latency sensitive.
 - May be done in locations outside of traditional cloud hubs due to power requirement availability
- Inference locations
 - May be in cloud-based inference clusters or on-device.
 - Limiting distance between users and inference clusters is key for performance

Factors shaping long-haul demand from AI

- Distributed training and federated learning
 - Use of multiple locations to train models which could be in different countries
- AI-based data compression and traffic routing improvements
- Spatial temporal load shifting
 - Moving workloads among data centers to optimize for power and processing availability
- Legal issues
 - Export controls Which countries can get advanced AI chips?
 - Data sovereignty Over 100 countries have laws governing where data can be stored and processed

Mother Earth as a motherboard

★ TeleGeography

≫ TeleGeography

The Future

HI prompt: please create a final image for my "Mother Earth, Mother Board" presentation in the style of the movie "Blade Runner"

Note: generated by human intelligence at TeleGeography

Thank you

Alan Mauldin

Research Director amauldin@telegeography.com

Would you like these slides?

